
©
20

12
 N

at
u

re
 A

m
er

ic
a,

 In
c.

  A
ll 

ri
g

h
ts

 r
es

er
ve

d
.

nature biotechnology  VOLUME 30 NUMBER 7 JULY 2012 �

Most malignant diseases, collectively referred to as cancer, are treated 
with some combination of surgery, radiation therapy and/or drug 
treatment1. Surgery and radiation are used to treat cancer that is con-
fined locally, whereas drug therapy is essential to kill cancer cells 
that have spread (metastasized) to distant sites in the body. Until 
recently, drug treatment mainly involved cytotoxic chemotherapy that 
kills all rapidly dividing cells, both tumor and normal. Accumulated 
empirical clinical experience, supported by animal models, showed 
that cytotoxic drugs are most effective when given in combination 
to achieve additive or synergistic effects2,3. A caveat has been that 
success requires the ability to combine drugs at their respective effec-
tive doses without unacceptable side-effects. The rationale underly-
ing combination cytotoxic chemotherapy has been to co-administer 
drugs that work by different molecular mechanisms, thereby increas-
ing tumor cell killing while reducing the likelihood of drug resist-
ance and minimizing overlapping toxicity. This approach followed the 
successful precedent of using combinatorial drug therapies to treat 
tuberculosis and other microbial infections4 and was the strategy that 
proved highly effective in antiretroviral treatment for HIV5.

Clinical success with combination chemotherapy was first achieved 
with co-administration of the antifolate methotrexate, the Vinca alka-
loid tubulin inhibitor vincristine, the purine nucleotide synthesis  
inhibitor 6-mercaptoturine and the steroidal agent prednisone in 
childhood acute lymphoblastic leukemia—subsequently extended to 
lymphomas with the combination regimen of vincristine and pred-
nisone plus the DNA-damaging agents nitrogen mustard and pro-
carbazine and then to testicular cancer and epithelial malignancies, 
notably colorectal, breast and many others3 (Fig. 1). Early, pregenomic 
research in the 1950s and 1960s established the major mechanisms of 

de novo and acquired resistance to cytotoxic drugs. These mechanisms 
include the following: decreased metabolic activation or enhanced 
degradation of the drug; increased expression of the drug target; 
alteration of the target or pathway to reduce sensitivity; and reduced 
uptake as well as chemical and enzymatic protection mechanisms to 
deal with reactive DNA alkylating agents6. The mechanisms of drug 
action and resistance were particularly well defined for the dihydro-
folate reductase inhibitor methotrexate, still used today, for which 
selective amplification of the drug target was first defined as a mode 
of resistance in 1978 (ref. 7). Further mechanistic understanding of 
the development of the multidrug-resistant (MDR) state in the 1970s 
and 1980s led to treatments aimed at overcoming resistance due to 
drug transporters; however, combination strategies with modulators 
of the MDR1 (P-glycoprotein) efflux pump8 proved disappointing, 
envisaged at that time to result from the common involvement of 
multiple resistance mechanisms, including insensitivity to drug-
induced apoptosis and induction of drug-detoxifying mechanisms9. 
Most recently, post-genomic identification of the extensive intratu-
moral genetic heterogeneity present in human cancers, and the clonal 
evolution and polygenic resistance that occurs, especially under the 
Darwinian selective pressure of therapy, provides us with a more com-
plete molecular explanation for the formidable clinical challenge of 
tumor resistance to all available therapies10–13.

The enduring principles that emerged from the pregenomic, cyto-
toxic chemotherapy era have remained applicable, even as the exciting 
new generation of molecularly targeted drugs have become available 
as a direct result of the genomic elucidation of the pathogenic drivers 
of different cancers14. Cancer drug discovery and development is now 
firmly focused on exploiting pathogenic oncogene and nononcogene 
addiction, synthetic lethalities, and other vulnerabilities and depend-
encies that can result in impressive selective therapeutic effects in 
specific malignancies15,16.

Despite the progress in moving from a one-size-fits-all cytotoxic 
approach to a new era of genetically targeted personalized molecular 
medicine, many challenges remain. The most important challenge 
is how to tackle the interrelated problems of genetic heterogeneity 
and drug resistance in cancer using intelligent drug combinations.  
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Here we assess the need for combination therapy, evaluate how com-
binatorial therapies are progressing in the clinic and review how to 
identify new drug combinations using in silico, in vitro and animal 
models that are likely to achieve valuable clinical benefit.

Successful targeted therapies in the clinic
Much of the success with targeted therapies has arisen from the exploi-
tation of the state of oncogene addiction, in which cancer cells become 
‘addicted to’—that is, physiologically dependent upon—the contin-
ued activity of specific activated or overexpressed oncogenes (or the 
loss of tumor suppressor genes) for maintenance of their malignant 
phenotype17,18. There have been encouraging advances in the treat-
ment of hematological malignancies and solid tumors, as revealed in 
hypothesis-testing clinical trials employing predictive as well as proof-
of-target-engagement pharmacodynamic biomarkers19, following the 
administration of molecularly targeted drugs as single agents in well-
defined oncogene-addicted subsets of cancers20. Use of the BCR-ABL 
inhibitor imatinib (Gleevec)21,22 in chronic myeloid leukemia, for exam-
ple, has led to an 80% decrease in disease mortality23. Imatinib also has 
activity in gastrointestinal stromal tumors by inhibiting mutant KIT, 
which is a frequent driver oncoprotein in this cancer. Before imatinib, 
addition of all-trans retinoic acid to the treatment of acute promyelo-
cytic leukemia harboring translocations in the retinoic acid receptor  
α (RARα) gene led to curative responses in most patients24.

Another key example is the ERBB2/HER2 antibody trastuzumab 
(Herceptin) that was approved initially for the treatment of patients 
with metastatic breast cancer whose tumors overexpress and are 
dependent upon the HER2 protein and who had received one or 
more chemotherapy regimens for their metastatic disease, or alter-
natively in combination with paclitaxel (Taxol) for HER2-positive 
metastatic patients who had not received prior chemotherapy25. Yet 
other examples are small-molecule tyrosine kinase inhibitors, such 
as the epidermal growth factor receptor (EGFR) inhibitors gefitinib 
(Iressa) and erlotinib (Tarceva) in EGFR-mutant non-small cell lung 
cancer (NSCLC)26 and more recently the BRAF inhibitor vemuraf-
enib (Zelboraf) in mutant BRAF-driven melanoma27 and the ana-
plastic lymphoma kinase (ALK) inhibitor crizotinib (Xalkori) in 
ALK-translocated NSCLC28. Some molecularly targeted drugs have 
modest single-agent activity but nevertheless show significant clinical 
 benefit—and are now integrated into clinical practice—when admin-
istered with standard-of-care cytotoxic drug treatment; examples 

include the EGFR antibody cetuximab (Erbitux) in combination 
with irinotecan (Camptosar)/5-fluorouracil in metastatic colorectal 
cancer29 and the HER2 tyrosine kinase inhibitor lapatinib (Tykerb) 
combined with capecitabine (Xeloda) in advanced breast cancer30.

In addition to >100 currently approved molecularly targeted 
agents, several hundred are in preclinical and clinical development16. 
These include not only those that target oncogene addiction, but also 
agents that exploit other cancer-associated mechanisms. For example, 
through their activity in BRCA-deficient cancers lacking homologous-
 recombination DNA repair, small-molecule inhibitors of poly(ADP-
ribose) polymerase (PARP) such as olaparib, that block repair of DNA 
single-strand breaks, provide the first clinical validation of therapeutic  
synthetic lethality, mediated through enhanced DNA damage31. In 
addition, drugs acting on the heat shock protein 90 (HSP90) molecular 
chaperone exemplify exploitation of nononcogene addiction32.

Resistance to therapies targeting addiction
There is a growing unease in academia and industry that well-
 validated targets will become increasingly harder to find33. Moreover, 
the frequently transient nature of responses to novel molecular thera-
peutics in many solid cancers has been linked to multiple mechanisms 
of resistance. Resistance mechanisms commonly comprise alterations 
in the addiction pathway that enable cancers to remain dependent on 
the original oncogenic process. But resistance can also involve bypass 
mechanisms that activate a parallel signaling track as well as pathway-
independent routes mediated by epithelial-mesenchymal transition 
or the gain of stem cell-like features, together with effects mediated 
through cancer-host cell interactions in the tumor microenvironment, 
including changes in angiogenesis drivers (for a review, see ref. 15).

Notable examples of resistance mechanisms include the develop-
ment of secondary mutations, such as in gatekeeper residues, in 
kinase targets such as ABL and EGFR, which confer resistance to 
imatinib and gefitinib/erlotinib34,35, respectively. These may be 
overcome by second-generation agents, such as the multikinase 
inhibitor dasatinib (Sprycel), that can bind to and block the resist-
ant allele36. Other examples of tumor resistance include decreased 
sensitivity to vemurafenib through NRAS mutation, receptor tyro-
sine kinase activation and overexpression of CRAF or COT/MAP3K8 
(which allow ERK1/2 MAP kinase pathway reactivation) and expres-
sion of BRAF splice variants that dimerize in a RAS-independent  
manner, all of which attenuate or prevent ERK blockade by RAF 
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Figure 1 History of combination therapy for cancer. POMP, procarbazine, vincristine (Oncovin), nitrogen mustard (mustine) and prednisone. MOPP, 
nitrogen mustard, vincristine, prednisone and procarbazine.
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inhibitors37–39. Alternatively, vemurafenib resistance can occur 
through loss of PTEN (phosphatase and tensin homolog) or RB1 
(retinoblastoma 1), despite effective inhibition of ERK signaling by 
the BRAF drug40. Furthermore, deep sequencing has revealed the 
huge extent of preexisting or induced molecular and phenotypic 
heterogeneity that exists in individual tumors (see above) and dem-
onstrated the simultaneous presence of multiple driver mutations 
within the same tumor11. All of these potential resistance mecha-
nisms and others could explain why well-designed drugs developed 
against well-validated cancer targets nevertheless fail to deliver sus-
tained benefit in the clinic.

Combinatorial targeted therapy
Realization of the full potential of molecularly targeted cancer 
 therapeutics is dependent on identifying the best possible drug 
combinations. This will require use of new technologies, including 
large-scale genomics and systems or network biology with associated 
computational approaches41. The scale of the challenge is illustrated 
by the sheer number of mathematically possible drug combinations. 
If we consider the set of ~250 approved cancer drugs, there are 31,125 
possible two-way combinations and 2,573,000 three-way combina-
tions. For the estimated 1,200 cancer drugs currently in develop-
ment the respective numbers rise to 719,400 and 287,280,400. Or, we 
can consider the possible combinations of cancer genes that might 
be targeted. Based on analyses using our integrated drug discovery 
platform canSAR42 (http://canSAR.icr.ac.uk/) of genes listed in the 
Cancer Genome Census43 (http://www.sanger.ac.uk/genetics/CGP/
Census/), we estimate that there are around 124 conventionally drug-
gable targets that are reported to harbor causative mutations in cancer. 
This gives us the potential for 7,626 two-way target combinations 
and 310,124 three-way combinations. Although these numbers are 
theoretical and not all combinations make mechanistic sense, the 
potential combinations would increase further if we included targets 
representing nononcogene addiction, synthetic lethality and other 
considerations. Clearly, it would be prohibitively expensive to evalu-
ate such large numbers of drug and/or target combinations in animal 
models let alone in a clinical setting. We therefore need methods to 
evaluate and prioritize the best potential combinations, either using 
large-scale unbiased in silico or experimental biology methods or 
by taking hypothesis-driven approaches based on new genomics,  
proteomics and other omics technologies44–46.

Despite the theoretical and practical challenges, many drug  
combinations are already being evaluated in the clinic. In the follow-
ing sections, we review progress using selected examples of clinical 
combinatorial drug treatments.

Current combinations of targeted drugs with chemotherapy
Combining molecularly targeted agents with chemotherapy has 
generally been pragmatic. Most new molecular cancer therapeutics 
generally have modest efficacy with responses that are not rapid or 
durable. Thus, targeted drugs might benefit from being combined 
with cytotoxic agents or radiation. This strategy is also influenced 
by consideration of how to gain regulatory approval for new drugs 
in settings where cytotoxic therapies are already marketed. Examples 
include the monoclonal antibodies trastuzumab in combination with 
paclitaxel25 in breast cancer, rituximab (Rituxan) in combination with 
cyclophosphamide/doxorubicin/vincristine/dexamethasone in non-
Hodgkin’s lymphoma47 or cetuximab in combination with irinotecan 
in colon cancer48 together with receptor tyrosine kinase inhibitors like 
lapatinib combined with capecitabine in breast cancer30. Key factors 
underpinning such combinations include tolerability and avoidance 
of possible pharmacokinetic interactions, and there is often no com-
pelling biological rationale underpinning them49,50. Although it may 
seem reasonable to combine a targeted agent with the standard of care, 
the experience from breast cancer teaches us that the concomitant 
administration of a hormonal agent with chemotherapy might show 
a trend toward an inferior result; in such cases these agents may be 
better used in sequence rather than in combination51.

There are exceptions where the molecularly targeted drug is specifi-
cally intended not to have single-agent activity (at least in most cancers) 
but rather to enhance the activity of co-administered cytotoxic chemo-
therapy. An example is the use of checkpoint kinase 1 (CHK1) inhibi-
tors52 in combination with chemotherapy drugs, such as DNA damaging 
agents gemcitabine (Gemzar) or irinotecan, where the therapeutic modu-
lator is designed to exploit defective cell cycle checkpoints in cancer.

Current combinations of molecularly targeted drugs
There are multiple potential approaches to the combination of targeted 
drugs (Table 1). Targeting more than one related oncogenic receptor 
tyrosine kinase, or inhibiting the same receptor in more than one way, is 
a rational approach to increase activity or overcome resistance. An inter-
esting example is the case of trastuzumab resistance in HER2-amplified  
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Figure 1 (Continued)
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breast cancer. Mechanisms of resistance include continued ligand-
induced signaling due to HER2–HER3 dimerization53, which has been 
targeted by combining the two differentially acting HER2 antibodies 
trastuzumab and pertuzumab (Perjeta)54 in the randomized phase 3 
CLEOPATRA trial involving over 800 patients (NCT00567190) which 
led to the recent approval of the triple combination of the two antibodies 
plus docetaxel. Alternatively, the expression of the truncated p95-HER2, 
which lacks the trastuzumab binding site, also results in trastuzumab 
resistance. This and other resistance mechanisms could be targeted by 
the combination of trastuzumab with HSP90 inhibitors that potently 
degrade HER2 (and additional oncogenic client proteins), which is 
highly dependent on the molecular chaperone for its function and  
stability55. This approach has been used successfully in HER2-positive  
breast cancer with the first-generation HSP90 inhibitor 17-AAG (tane-
spimycin)56 and is now being investigated in current clinical trials 
with improved non-geldanamycin HSP90 inhibitors, such as AUY922  
(ref. 57) (NCT01271920). Although the pleiotropic effects of HSP90 
inhibitors are expected to reduce the opportunity for resistance to 
occur, de novo and acquired resistance to tanespimycin is associated 
with reduced metabolic activation of its quinone group to produce the 
potent hydroquinone form, mediated by loss of expression or selection 
for an inactive polymorphic form of NQO1/DT-diaphorase, a possibil-
ity absent with nonquinone chemotypes like AUY922 (refs. 58,59).

Activation of oncogenes and inactivation of tumor suppressor genes 
downstream of a membrane receptor frequently leads to pathogenic 
activation of oncogenic signal transduction pathways. Efficacy of 
 targeted therapies may be enhanced, or resistance overcome, by simulta-
neous combinatorial targeting of the receptor and a downstream signal 
transduction pathway. Combinatorial options are sometimes described 
as ‘vertical’ (within an oncogenic pathway) or ‘horizontal’ (across two 
such ‘parallel’ pathways), although in reality signaling outputs operate in 
complex networks that need to be understood more fully (see below).

An example of vertical oncogenic pathway targeting is the discovery 
of mechanisms of trastuzumab resistance through activating muta-
tions of the PIK3CA oncogene, which encodes the p110α isoform of  
phosphoinositide-3 (PI3) kinase60, or loss of expression of the opposing  

phosphatase, the tumor suppressor PTEN61. The combination of an 
mTOR (mammalian target of rapamycin) inhibitor, which is one of 
several possible PI3 kinase pathway inhibitors (e.g., the rapamycin 
analog everolimus), with trastuzumab is currently being evaluated 
in HER2-amplified breast cancer in the ongoing BOLERO-3 trial 
(NCT01007942). Because the androgen receptor pathway remains 
the major oncogenic driver in metastatic castrate-resistant prostate 
cancer, as demonstrated by the efficacy of the CYP17 inhibitor abi-
raterone (Zytiga)62 and the highly potent androgen receptor antago-
nist enzalutamide (MDV3100)63, combinatorial vertical targeting of 
the pathway is now recognized to be important.

One example of the rational, horizontal, combinatorial targeting 
of parallel oncogenic signaling pathways is based on the observation 
of increased phosphorylation of the kinase AKT (functioning down-
stream of PI3 kinase), in preclinical NSCLC models as a mechanism of 
resistance to allosteric inhibitors of another kinase MEK (MAP kinase 
kinase), which operates downstream of RAS and RAF in the ERK1/2 
MAP kinase pathway64,65. Preliminary efficacy of the combination of 
the MEK inhibitor AZD6244 and the allosteric AKT inhibitor MK2206 
(ref. 66) has been demonstrated in NSCLC in ongoing hypothesis-testing  
phase 1 trials (NCT01021748). Indeed, combining drugs to overcome 
feedback loops that are activated by a given molecularly targeted agent 
has attracted considerable interest. Another topical example of this 
is the co-administration of monoclonal antibodies targeting insulin-
like growth factor receptor 1 (IGFR-1) to prevent the insulin receptor 
substrate 1 (IRS1)-mediated feedback loop activating AKT that occurs 
after treatment with an mTOR inhibitor67,68. This approach is being 
explored clinically in promising ongoing studies with combinations 
such as dalotuzumab plus ridaforolimus69 (NCT01234857).

Although therapeutic benefit may be observed, the ever-present 
problem of additive on-target toxicity has led to the failure of 
 combinations of two different anti-angiogenic vascular endothelial 
growth factor (VEGF) targeting agents, namely bevacizumab 
(Avastin) and sunitinib (Sutent), which caused hypertension and 
hemolytic anemia70. In contrast, the vertical pathway combination 
of BRAF (GSK2118436) and MEK (GSK1120212) inhibitors—which 

Table 1 Clinical trials evaluating combinations of molecularly targeted agents
Drug combination Biological rationale Patient population likely to benefit Stage

Targeting same family of RTKs in more than one way

Pertuzumab + trastuzumab + docetaxel  
versus placebo + trastuzumab + docetaxel  
(CLEOPATRA; NCT00567190)

Resistance to trastuzumab (targeting HER2) is mediated by  
continued HER2/HER3 dimerization; pertuzumab acts at  
different site on HER2 from trastuzumab to inhibit dimerization.

HER2 amplified breast cancer Approved 
June 2012

Trastuzumab + AUY922 (NCT01271920) Resistance to trastuzumab (targeting HER2) is mediated by  
truncated p95HER2; by inhibiting HSP90, AUY922 will cause 
degradation of all forms of HER2 and also overcome other  
resistance mechanisms.

HER2 amplified breast cancer Phase 1

‘Vertical’ targeting of RTK and downstream effectors

Everolimus + trastuzumab + vinorelbine  
versus placebo + trastuzumab + vinorelbine  
(BOLERO-3; NCT01007942)

Resistance to trastuzumab (HER2 inhibitor) is mediated by  
PIK3CA mutation or PTEN loss; everolimus is an mTOR/PI3  
kinase pathway inhibitor.

HER2 amplified breast cancer Randomized 
phase 3

GSK2118436 + GSK1120212 (NCT01072175) MEK activation by COT and CRAF is a mechanism of resistance 
to BRAF inhibitors e.g., GSK2118436; this can be overcome 
using MEK inhibitors such as GSK1120212.

BRAF mutant melanoma and  
colorectal cancer

Phase 1

‘Horizontal’ targeting of parallel pathways

MK2206 + selumetinib (NCT01021748) AKT activation is a mechanism of resistance to selumetinib  
and other MEK inhibitors; MK2206 is an AKT inhibitor.

KRAS mutant NSCLC Phase 1

GDC-0941 + GDC-0973 (NCT00996892) PI3K pathway activation is a mechanism of resistance to  
GDC-0973 and other MEK inhibitors; GDC-0941 can overcome 
this by inhibiting PI3 kinase.

Dual PIK3CA/KRAS  
mutant colorectal cancer

Phase 1

Trials listed above are examples of combinations of molecularly therapeutic agents that target the same receptor tyrosine kinase, target a signal transduction pathway at different 
nodes or target multiple signal transduction pathways. RTK, receptor tyrosine kinases.
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has a sound rational basis in seeking to overcome several of the iden-
tified mechanisms of resistance to BRAF inhibitors as well as block-
ing the undesirable paradoxical activation of CRAF in healthy cells 
(through RAF dimer formation) following treatment with BRAF 
inhibitors71,72—has led to additive activity against melanoma with 
surprisingly manageable skin toxicity and encouraging efficacy73.

Targeting multiple pathways and hallmark cancer traits
Individual targeted agents that simultaneously affect multiple onco-
genic signal transduction pathways could be used either as single 
agents or in combination with other anti-signaling drugs to yield 
even more powerful antitumor effects and block the induction of 
resistance mechanisms. A range of receptor kinase inhibitors, such as 
sorafenib (Nexavar), vandetanib (Caprelsa), foretinib and regorafenib 
have more than one target (by serendipity or design) and are known 
to be effective in clinical settings74–77. The polypharmacology of 
kinase inhibitors can be revealed by kinase profiling technology 
although de novo design of a required kinase selectivity profile can 
be challenging78. Of considerable current interest is the optimal selec-
tivity profile of class I PI3 kinase inhibitors and in particular the 
potential therapeutic advantage and side effects of simultaneously 
inhibiting mTOR as well as PI3 kinase79.

As mentioned previously HSP90 inhibitors are good examples of 
targeted pleiotropic drugs, as they were designed to deplete multi-
ple oncogenic client proteins and thus combinatorially block many 
cancer-supporting signal transduction pathways and cancer hall-
marks57,80,81. Clinically, these agents have shown utility when used 
particularly to target the relevant driver HSP90 client oncoprotein, 
including amplified HER2 in breast cancer, mutant EGFR and ALK 
fusions in NSCLC, mutant BRAF in melanoma, and the androgen 
receptor in prostate cancer, in addition to other signaling proteins 
such as AKT32. Moreover, HSP90 inhibitors have major advantages 
in targeting drug-resistant alleles and overcoming or preventing 
resistance through multiple mechanisms, and might be used in 
combination with other targeted agents, especially those acting 
on the same driver HSP90 clients in the above cancers32.

Combination approaches might also include drugs that act on epi-
genetic processes, including histone deacetylase inhibitors82,83, and 
other chromatin-modulating enzymes, such as demethylases, that 
could counteract the resistance that is associated with a chromatin-
mediated, reversible drug-tolerant state in cancer cell subpopulations 
that have stem cell–like features84.

Most cancer drug discovery and development is focused on targeted 
agents that induce apoptosis or cell cycle arrest in malignant cells. 
However, combinations of agents that individually modulate the mul-
tiple malignant hallmarks of cancer, including invasion, angiogenesis 
and metastasis, together with tumor metabolism and proteostasis, as 
well as those that affect other aspects of the tumor microenvironment 
or stimulate the immune response (e.g., CTLA-4 inhibitor ipilimumab, 
Yervoy, in melanoma85), could also be very powerful when added to 
drug combinations by striking simultaneously at the multiple malign 
phenotypic behaviors of cancer cells86–88.

Unbiased approaches to drug combinations
Although hypothesis-driven and candidate empiric approaches are 
important, systematic high-throughput unbiased screening strategies 
provides a complementary approach to identifying effective drug 
combinations. Combination high-throughput screening of all licensed 
drugs has been carried out in an attempt to discover unexpected syn-
ergistic interactions89. This is exemplified by the combination of the 
antiparasitic agent pentamidine (NebuPent) and the phenothiazine 

antipsychotic chlorpromazine (Thorazine) which exert dual synergistic  
anti-mitotic effects in cancer cells90,91. Such an unbiased approach can 
reveal unexpected and promising combinations of already licensed 
agents that can be progressed rapidly to the clinic.

A recent chemical genomic screen identified transcriptional 
 repressors, including anthracyclines like doxorubicin (already in 
clinical use), that selectively downregulated the anti-apoptotic protein 
MCL192. The gene encoding MCL1 is frequently amplified in human 
cancer. This apoptosis-modulating activity might explain the activity 
of anthracyclines in clinical drug combinations. In the same study, 
high BCL-xL expression was identified as a potential predictive 
biomarker for use in patient selection.

As an alternative to chemical screening, another unbiased strategy is 
to conduct systematic genome-wide loss- or gain-of-function screens 
in tumor cells where the objective is to identify genes for which RNA 
interference (RNAi) silencing or cDNA overexpression results in 
sensitivity or resistance to cancer drugs93,94. Extensive efforts have 
been focused on genetic interaction screens with gene knockouts or 
RNAi in microbial systems, with implications for cancer targets95,96. 
Success has also been achieved using similar screens in cancer cells. 
For example, the PI3K pathway was identified as a determinant of 
trastuzumab resistance in breast cancer97, and CDK10 was identified 
as an important determinant of resistance to tamoxifen98 using large-
scale screening of RNAi libraries.

Recently, another unbiased large-scale RNAi screen identified feed-
back activation of EGFR as a cause of resistance of colon cancer cells 
to BRAF inhibition, suggesting the use of a combination of BRAF and 
EGFR inhibitors in BRAF mutant, EGFR-expressing colon tumors99. 
Additionally, an overexpression kinome screen identified COT, 
CRAF and genes encoding receptor tyrosine kinases as genes able to  
cause resistance to BRAF inhibition, again suggesting actionable com-
bination strategies, including the use of MEK, tyrosine kinase and  
HSP90 inhibitors37,38.

We are now seeing an increasing use of massively parallel next-
 generation sequencing of whole exomes and genomes to discover 
genes that are likely to be involved in resistance, both in tumor-
derived cancer cell lines and in cancer tissue obtained from patients 
treated with targeted agents12,14. Automated large-scale screen-
ing of cancer drugs in extensive panels of hundreds of genetically 
annotated cell lines could also be adapted to identify promising 
combinatorial regimens and the mechanistic underpinnings of such 
effective drug combinations that would inform patient selection using  
predictive biomarkers100,101.

Computational approaches to identify targeted combinations
Computational methods are being applied to explain and predict both 
therapeutic resistance and potential drug combinations, particularly 
to maximally exploit the full depth of high-throughput experimental 
data. Historically, the Loewe additivity model102 allowed the pre-
diction of the maximum effect of combined drugs based on their 
individual drug-response functions. Later, the Goldie-Coldman 
hypothesis was used to explain the emergence of drug resistance 
based on the genetic instability of the cancer cells, and predicted that 
this problem can only be tackled by combining non-cross-resistant  
chemotherapies103. Loewe’s model was expanded in Chou and 
Talalay’s combination index, which allowed quantifying synergy, 
additivity or antagonism104. Based on the median-effect principles 
of the mass action law, enzyme kinetics were incorporated into the 
model to allow prediction of the degree of inhibition by the com-
bined drugs, assuming that they acted through the same mechanism 
with no allostery. Additionally, a general solution by Berenbaum105  
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represented dose-effect responses in a multidimensional hyperplane. 
This scalable solution allowed the identification of synergy or antago-
nism for any number of drugs.

Although early methodologies primarily focused on the dose-
response relationships of drugs, understanding the molecular mecha-
nisms of drug action and including them in the mathematical model 
became necessary. Simulation of the kinetics of folate metabolism106, 
and later the more complex biochemical pathways of folate and nucleo-
tide metabolism107, represented the first computational modeling of 
a biological pathway and the effect of drugs upon it. Synergy models 
were used to deduce likely underlying biological interaction networks 
from drug combination effects108. Meanwhile, computational models 
identified patterns in the pathway topology downstream of EGFR, 
which can explain the observed combinatorial effects of drugs acting 
on this pathway109.

To enable mechanistic understanding of drug resistance and predict 
potential drug combinations, researchers now use two interconnected 
disciplines: first, cellular connectivity and interaction networks; and 
second, the Darwinian evolution of cancer cell populations. New models  
make use of massive data inputs from next-generation technologies, 
such as deep exome and genome sequencing. In the following sec-
tions, we focus on these two classes of new computational modeling 

strategies: evolutionary or Darwinian modeling and network and/or 
systems modeling. These two classes comprise a multitude of different 
mathematical models. Despite their diversity, the approaches have 
the same fundamental components (Fig. 2). An initial model is built 
from prior knowledge and baseline data, such as individual mutations, 
whole exome and/or genome sequencing data, protein interaction 
networks and cell population statistics110,111. The model is enriched 
where possible with dynamic/kinetic information—including changes 
in cell-growth rates, enzyme kinetics, phosphoproteomic patterns, 
mutations, gene expression profiles and epigenetic marks—followed 
over time and in response to perturbation by drug treatments. After 
internal validation based on known test data, the model can be used 
to predict outcomes in cells. Experimental testing can then be used 
confirm the predictions and/or provide additional data to improve the 
model. Incorporation of observed biomarker changes will facilitate 
responsive data-led enhancements to the in silico models.

Evolutionary modeling for drug combinations
Evolutionary or Darwinian models use population statistics112 to 
explain tumor heterogeneity and clonal evolution10. Cancer cells 
present in a tumor are treated as a heterogeneous population and cell 
lineage can be defined based on genetic similarity. This allows iden-
tification of the probable cell of origin, and prediction of likely trends 
in tumor growth and drug resistance based on the clonal genetics  
of the tumor113.

An evolutionary tree is constructed using genomic analyses of 
tumor cells based on mutation status or epigenetic marks11,114,115. 

Hypothesis

Baseline data Response data

Phosphoproteomics

Expression in response
to drug administration

Model

Test

Intervention
combination

Baseline multi-omics

Interactomes

PD biomarker changesMutations

Figure 2 Components of iterative computational approaches for 
identifying drug combinations. Baseline or static multi-omics data, 
including gene expression, mutation, DNA copy number and proteomics 
information, provide inputs for the generation of an initial model of the 
system. Cell or protein network dynamic and kinetic data measure the 
altered abundance, activity or cellular location of proteins over time and in 
response to perturbations such as drug interventions. These data are fed 
into the mathematical model and can be used to generate hypotheses and 
simulate likely outcomes. Hypotheses are then tested in the laboratory and 
data from these tests can be used to refine the model, eventually resulting 
in a data-driven drug combinations. PD, pharmacodynamics.

Figure 3 Evolutionary model of clonal heterogeneity. Darwinian evolution 
of a heterogeneous tumor in response to selection pressure from drug 
intervention is shown. Each circle represents a cell; g1–g3 are three cell 
generations. At the time of administration of the first-line drug (Drug 1), 
there are four discrete populations with distinct genomic changes, such 
as somatic mutations (represented by colored squares). Only two of the 
populations survive Drug 1, presumably due to advantages conferred by 
mutations. These surviving populations constitute the majority of the tumor 
(g2), which is now resistant to Drug 1. The majority of cells in g2 acquire 
new mutations as represented by the light blue, dark blue and green 
squares. Selective pressure from a second-line treatment (Drug 2) results 
in a third generation (g3) that is multi-drug resistant. Evolutionary models 
based on population genetics can be used to mathematically represent 
this process. Such models can be used to assess potential outcomes of 
hypothetical drug combinations or different dosing schedules in silico.

Drug 1 Drug 2

Cell death

Cell death

Cell death

Cell death

g1 g2 g3
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In such evolutionary models, the administration of drugs confers 
selection pressure on the population, resulting in the survival of the 
fittest cells: that is, in the present therapeutic context, those with the 
genetic features that make them drug resistant116 (Fig. 3). The models 
 identify clonal evolutionary branch points and associate them with 
genetic events that coincide with, and may pathogenically drive, 
downstream differences such as acquired drug resistance113.

Evolutionary models have been useful for understanding drug 
effects and drug resistance, and are being used to predict better dosing 
schedules and combinations of cancer drugs. Studies using evolution-
ary models of acquired drug resistance to protein kinase inhibitors 
acting on the EGFR pathway117 have shown that the likelihood of 
resistant clones emerging can be predicted based on the resulting 
downstream cellular effects of the drug together with tumor size. 
If a drug acts by causing cell death, then the likelihood of resistant 
clones arising is low for small tumors and high for large tumors. On 
the other hand, drugs that act by inhibiting cell growth rather than 
cell death have a smaller chance of driving emergence of resistant 
clones regardless of tumor size, provided that resistant clones do not 
already exist. This finding described the nuances of kinase inhibi-
tor drug action and highlighted the importance of understanding 
and addressing these when considering effective drug dosing and 
scheduling. Evolutionary approaches have been applied to identify 
optimal combinations and administration schedules for EGFR inhibi-
tors gefitinib and erlotinib in NSCLC cell lines to prolong the likely 
clinical benefit through delaying the evolution of resistant mutants118. 
Furthermore, the application of evolutionary models in drug- 
resistant NSCLC, together with cell-based studies, has identified  
that sequential therapy using cytotoxic agents with either erlotinib 
or gefitinib was more effective than monotherapy or concurrent  
combination dosing119.

Network modeling for drug combinations
Network-based modeling is a parallel and complementary approach 
to evolutionary modeling and can be applied regardless of the avail-
ability of in-depth data on oligoclonality. This approach focuses on 
the mathematical modeling of the complex pathways and protein 
interaction networks underpinning the hallmarks of cancer, and uses 
genomic and proteomic data—from patient samples or cancer cells 

in culture—to model the networks in the context of specific genetic 
backgrounds45,120,121. These network models require several factors: 
a computational representation of the protein interaction network in 
question; the ability to mathematically represent its kinetic changes; 
and the ability to predict likely outcomes of perturbation.

Baseline omics data, ideally derived from patient samples, are often 
a first step in identifying the molecular signature of a specific malig-
nancy or responsive gene group23,122. Once a set of genes is identi-
fied, protein set enrichment and pathway analysis is typically done to 
identify the underlying processes represented by these genes123. Major 
canonical pathways in cancer are increasingly well established86,87; 

Table 2 Major public repositories of protein pathway and interaction network data
Resource Comment URL Reference

Database of Interacting 
Proteins (DIP)

Experimentally identified physical interaction between proteins.  
No directionality information.

http://dip.doe-mbi.ucla.edu/dip/Main.cgi  159

IntAct Manually curated from 5,000 publications plus some individual  
user entries. No directionality information.

http://www.ebi.ac.uk/intact/  160

MINT Interactions between biological entities including DNA/RNA as well as protein. 
Protein interaction data mined from literature. No directionality information.

http://mint.bio.uniroma2.it/mint/  161

Pathway commons Contains both pathways and interactions. Some directionality information 
available.

http://www.pathwaycommons.org/pc/home.do  162

PICOLO Three-dimensional structure derived protein-protein interactions.  
Limited to structurally characterized proteins but accurate and curated.

http://www-cryst.bioc.cam.ac.uk/databases/piccolo  163

Reactome Curated pathways. Contains directionality information. http://www.reactome.org/  164

ROCK A breast cancer resource that also contains a large set of protein  
interaction and pathway data compiled from many sources and independent 
of disease. Contains transcriptional effects as well as physical interactions. 
No directionality information.

http://rock.icr.ac.uk/  165

STRING Known and predicted protein interactions. Three-dimensional structural  
annotation enhances the interaction networks. No directionality information.

http://string-db.org/  166

BioGrid Curated protein-interaction and transcriptional data. http://thebiogrid.org/  167

Several commercial products are also available, such as Thomson Reuters’ MetaCore (http://www.genego.com/metacore.php), Ingenuity IPA (http://www.ingenuity.com/) and KEGG 
(Kyoto Encyclopaedia of Genes and Genomes; http://www.genome.jp/kegg/).

Logic-based model

or

Activated
protein D

Activated
kinase Bnot

Receptor Receptor ReceptorActivated
kinase A

Activated
kinase A

Activated
kinase A

Activated
protein D

Activated
kinase B

Activated
kinase C

Activated
kinase C

Activated
kinase C

Bayesian network

Activated
protein D

Activated
kinase B
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and

and

Figure 4 Network-based computational models. In this hypothetical 
pathway, a receptor can be activated on binding either ligand 1 or ligand 2.  
Upon activation, the receptor recruits activated kinase A resulting in 
the activation of kinase C. Activated kinase C can activate protein D 
provided that a third kinase (kinase B) is not activated. (a) A Bayesian 
network, where every connection in the network is represented by a set of 
probabilities. Probabilities are dependent on previous events. (b) A logic-
based model where logic gates, with underlying truth tables, represent 
each of the connections in the database. (c) A mass action model where 
all interactions in the network are represented as reaction equilibriums 
with underlying kinetics.
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however, these canonical pathways do not capture complex and 
 context-dependent cellular wiring patterns. Several resources exist 
that allow users to retrieve protein interaction maps or pathways for 
a set of proteins. Table 2 highlights major public databases. These 
resources overlap to some degree and have strengths and weakness.  
A major weakness across all resources (Table 2) is the scarcity of 
directionality data. For example, the databases provide information 
that kinase A interacts with protein B, rather than kinase A activates 
protein B. Because of this, a concerted effort by the research commu-
nity is required to address the lack of directionality and temporal data 
in order to improve the utility of the databases for therapeutic applica-
tions, such as computational prediction of drug combinations.

Input data for network models can be of any type that capture tem-
poral changes in samples or changes in response to biological or thera-
peutic intervention45,124. An example is the monitoring of changes in 
protein phosphorylation in IGFR interaction networks from breast 
cancer cell lines, before and after IGF-1 stimulation45. Where available, 
proteomic and phosphoproteomic biomarkers from patient samples 
are an extremely valuable kinetic data source125, allowing capture of 
changes to cellular networks before patient treatment and at different 
stages after treatment, including in response to drug combinations126. 
This facilitated the identification of synergies between MET and EGFR 
inhibitors as a novel approach to address chemoresistance in patients 
with glioblastoma multiforme expressing EGFRvIII126. Epigenetic 
changes, such as DNA methylation or histone modification at different 
disease stages or in response to drug treatment, are also used127.

Pathway and protein-protein interactions benefit from extensive 
public resources as described above and in Table 2; however, no such 
resources exist to capture network kinetic data. Although useful infor-
mation can be gleaned from sources such as PhosphoSite128, which 
captures curated data from phosphoproteomics studies, kinetic data 
are not collated into public databases, and are usually produced in 
the laboratory for a specific study. Hence, there is a need to create 
such a public resource.

Modeling cancer networks
A long-term goal of systems/network biology is the production of a 
responsive mathematical model describing the behavior of cells or 
even whole organisms (e.g., see the E-cell project; http://www.e-cell.
org/). Clearly, this is an ambitious goal that is being met in part through 
 modeling causal protein interaction-network pathways or defined 
interaction networks. An example is the modeling of causal protein 
 interaction networks in individual human immune cells from multi-
parameter data obtained experimentally through flow cytometry and 
 proteomics experiments129 as well as the modeling of the MAPK path-
way130. Figure 4 shows representations of a simple signaling pathway as 
characterized by the major model types adopted in the field.

Logic-based models have been applied successfully to describe cancer  
network kinetics46,131,132, to identify differential signaling networks 
between normal and cancer tissue120, and to define likely drug syner-
gies46. A model of the nuclear factor kappa B (NFκB) pathway using 
dose-response data for drugs targeting molecules in the pathway 
identified synergies between certain agents, such as the (I kappa  
B kinase) IKK inhibitor PS-1145 when combined with the HSP90 inhib-
itor geldanamycin46. A study of 231 unique pairwise combinations of  
22 receptor-specific ligands in the RAW 264.7 mouse leukemic mono-
cyte macrophage cell line showed that whereas treatment with indi-
vidual ligands demonstrated limited measurable effect (e.g., cytokine 
release), combinations of ligands nearly all had synergistic or additive 
effects. For example, the authors identified synergy between ligands 
inducing cAMP production, such as the beta-adrenergic agonist  

isoproterenol, with Ca2+-mobilizing ligands, such as the pyrimi-
dinergic receptor P2Y agonist 2-methylthioATP. The study mapped 
the potential cellular wiring to explain the observed synergies and 
hypothesized that limited mechanisms of cross-talk could potentially 
be exploited to maximize the synergy133. Later, a logical model of the 
metabolic circuits from the same cells showed that the circuits could 
be simplified into semi-independent transduction units that lie down-
stream of signal receptors134. This model, if experimentally verified 
with emerging interactome data, would simplify the design of drug 
combinations using co-administered agents that target individual 
units or multiple units depending on the genetics of the disease.

A mass action model of the IGF-1 signaling network, using 
 phosphoproteomic analysis before and after IGF-1 stimulation in 
MDA-MB231 human triple-negative breast cancer cells45 identified 
that the combination of inhibitors of the MAP4K and PI3K/AKT path-
ways provides a synergistic effect in reducing cell viability, whereas 
combinations of inhibitors of the MAPK and mTOR pathways show 
the opposite effect in activating AKT and increasing cell viability45.

Although we are some way away from achieving a human cellular 
wiring map, such as the one achieved for Saccharomyces cerevisiae95, 
network modeling will benefit from the expanding efforts to map 
the human interactome, including the impact of cancer and drugs on 
the model. Using novel systematic approaches, such as genome-wide 
synthetic lethality screens93,94,135 and chemical genetics91,136, should 
provide complementary data that can help to explain the interactions 
between cellular pathways and inform drug combinations through 
systematic, unbiased experimental determination of the effects of the 
combinatorial inhibition of targets.

Other computational approaches
In other work, a completely computational and unbiased approach137 
exploited a series of drug features, such as molecular targets,  
pharmacological data and toxicity profiles, to develop a novel algo-
rithm to predict effective synergies using 184 pairwise combinations 
of US Food and Drug Administration (FDA)-approved drugs. This 
approach identified 16 high-scoring drug combinations, not pre-
viously tested, that could be of potential use in the clinic.

As with all computational methods, the integration of alternative 
models to generate combination hypotheses and identify consensus 
findings will be advantageous. Computational protocols, such as 
CytoSolve138, allow the combination of alternative models and gen-
eration of consensus hypotheses. In addition, the BioModels data-
base139 captures curated published biological models that can be used 
for specific molecular processes and will eventually be a very useful 
training resource for the field. Sophisticated and data-responsive 
computational approaches are evolving alongside the evolution of 
new screening and omics technologies. The alliance of new generation 
computational and experimental technologies will pave the way for 
identifying data-driven real-time drug combinations.

Preclinical testing and biomarker-led clinical trials
The high failure rate of cancer drugs, especially in large and expensive 
late-stage human clinical trials, indicates the urgent need for improved 
translation of therapies from preclinical models, particularly so for drug 
combinations. The computational and in vitro cell culture–based models  
that are frequently used in the drug combination studies described 
in this article are very useful for prioritizing options. The value of 
very large annotated cancer cell line panels to systematically link drug 
response to genetics has been demonstrated, indicating potential for 
future combination studies100,101,140. However, in vivo studies in mice 
are normally needed to ensure relevance to cancer in the whole animal 
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setting, including host-stromal interactions and immune responses. 
Human tumor xenografts molecularly characterized for genomic driv-
ers and vulnerabilities are very useful, and their value can potentially 
be increased with early passage and orthotopic refinements141.

The new generation of genetically engineered mouse models is 
proving increasingly relevant and useful because they mimic sponta-
neous and autochthonous cancer progression142,143. Recent studies of 
such models with oncogenic KRAS-driven lung and pancreatic adeno-
carcinoma showed that they can closely phenocopy human therapeu-
tic responses to standard-of-care treatment regimens144. Genetically 
engineered mouse models have clear potential for discovering predic-
tive biomarkers, gaining mechanistic insights into drug resistance in 
human cancers and predicting clinical outcomes, particularly for drug 

combinations143. As an example, studies using 
mutant Kras G12→D and PIK3CA H1047→R  
showed that inhibitors of the PI3K-mTOR 
pathway may be active as single agents in 
cancers with PIK3CA mutations but will 
need to be combined with MEK inhibitors 
to treat KRAS-mutated lung cancers, lead-
ing to clinical trials such as the AKT-MEK 
inhibitor combination discussed earlier145 
Proteomic and gene expression studies using 
triple-negative breast cancer cell lines and 
GEMMs showed that cancer cells remodel 
the kinome in response to MEK inhibition as 
single inhibitors, which eventually gives rise 
to drug resistance and rescue from cell arrest 
by upregulation of receptor tyrosine kinase 
inhibitors as a result of c-Myc degradation146. 
Combination of MEK inhibitors with recep-
tor tyrosine kinase inhibitors showed rapid 
response and increased apoptosis, in contrast 
to the response resulting from single agents.

In view of the many opportunities and high 
costs of clinical trials (from $50–100 million 
for a large randomized phase 3 study), it is 
important that prioritized drug combinations 
are evaluated in carefully planned, hypothesis- 
testing, biomarker-rich clinical studies. All 
early trials of new agents should, wherever 
possible, involve the use of predictive and/or 
enrichment biomarkers for patient selection 
together with pharmacodynamic biomarkers 
to assess target and pathway modulation in 
a Pharmacologic Audit Trail16,19. Moreover, 
special considerations apply to drug combina-
tions, because careful attention to principles 
of patient selection, dose, schedule, exposure 
and target engagement alongside tolerability 
and efficacy is crucial to success. For exam-
ple, such careful studies might in some cases 
predict the relative benefits of intermittent 
or pulsatile dosing rather than simultaneous 
co-administration147. It is critical to know 
if the molecular targets and pathways being 
modulated are hit hard enough and for long 
enough, as indicated from previous preclini-
cal and clinical data148.

Whereas phase 1 combination studies have 
been typically based on individual single-

agent trials that defined the maximum tolerated and recommended 
doses together with optimal pharmacokinetic-pharmacodynamic 
profiles, clinical investigators carrying out early trials with drug 
combinations often now employ flexible designs that allow creative 
escalation or de-escalation of the doses of the component drugs, again 
with careful attention to drug exposures and target engagement148. 
Daily, weekly or intermittent dosing, potentially with drug holidays 
if required, can be used to manage toxicity. The overall aim is to get a 
dose and schedule that is not only effective in terms of optimal phar-
macokinetic-pharmacodynamic effects, but also well tolerated. Based 
on modeling and network biology approaches, we are likely to have 
to carry out trials where individual agents demonstrate therapeutic 
activity only when used in appropriate combinations.
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Figure 5 The evolution of strategies and technologies for evaluating drug combinations. The near 
future will see the advent of cocktails of molecularly targeted combinations that are rationally 
defined based on deep profiling of the patient and adapted in response to longitudinal molecular 
follow-up. The syringe symbol indicates cytotoxic chemotherapy and the target symbol indicates 
molecularly targeted therapy. MTD, maximum tolerated dose.
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The potential to avoid known resistance mechanisms (e.g., evad-
ing efflux pumps and gatekeeper mutations) and the likely use in 
drug combinations (e.g., eliminating cytochrome P450-mediated and 
other metabolic drug-drug interactions and hERG liabilities) is now 
routinely factored into the chemical design and selection of small- 
molecule drug candidates149. Despite this, addictive toxicity still fre-
quently limits the development of successful combinatorial regimens 
for cancer drugs. Early success with combinations of molecularly 
 targeted agents featuring monoclonal antibodies was due at least in 
part to their excellent specificity, whereas small-molecule therapeutics 
commonly exhibit off-target as well as on-target effects25,29. Regimens 
combining multiple molecularly targeted agents are currently fraught 
with actual or potential additive on-target and off-target toxicity.  
For example, mechanistically attractive combinations of MEK 
and AKT inhibitors could cause additive toxicity involving skin 
rash and diarrhea. These issues need to be managed by care-
ful target engagement and pathway biomarker evaluation, adap-
tive changes of administration schedule, and an appreciation that 
it may not always be necessary to administer both drugs at their 
single-agent maximum-tolerated doses. Attention to such fac-
tors has led to successful implementation of several combina-
tions, resulting in clinical benefit that is not observed with the  
constituent single agents alone66.

Detection of pathogenic driver mutations or amplifications, for 
example, with inhibitors of HER2, EGFR, BRAF and ALK, has led 
to considerable success in stratifying subsets of patients who are 
likely to respond to single, targeted agents or combinations thereof. 
However, there are currently very few scientifically validated and 
clinically qualified predictive response biomarkers12. Even where 
preclinical evidence indicates the usefulness of a predictive biomar-
ker, there is less clarity as to whether molecular subtyping has led to 
prediction of a response in the clinic. For example, PIK3CA muta-
tions were not necessarily predictive biomarkers of response for an 
mTOR inhibitor in the setting of estrogen receptor–positive breast 
cancer150. Next-generation sequencing is providing a more com-
prehensive assessment of mutational profiles that will facilitate the 
further refinement of patient stratification strategies in clinical trials 
of drug combinations20.

It is now clear that combination treatment strategies will require 
longitudinal genetic assessment of the tumor state—ideally in the 
first instance by unbiased mutation and gene expression profiling—so 
that the therapy can be adapted as the tumor reacts dynamically to 
the perturbation and evolves under the selective pressure of treat-
ment. Also valuable would be the broad assessment of signaling out-
put at the protein level—both to choose the best drug combination 
and then to monitor network effects, for example, using phospho-
proteomics126. Although repeat assessments currently require multiple  
tumor biopsies, ongoing and future developments in noninvasive 
functional imaging or refinement of technology to assess circulating 
tumor cells and other blood-borne markers, such as tumor DNA151, 
could make the aspiration of real-time monitoring and therapeutic 
adaption a reality for clinical trials and potentially for routine use41.

One important question that remains to be answered is whether 
it is preferable to use a full battery of combinatorial agents up-front 
or to administer simpler cocktails in a sequential fashion, with fewer 
drugs in each combination. Addressing this issue will require more 
work in preclinical models and in careful clinical trials. Past work 
from cancer and other diseases, together with computational and 
systems biology analysis, suggests that up-front treatment with the 
maximum combination of agents will commonly have greater impact. 
Sequential therapy may be valuable as demonstrated by the example 

of adjuvant endocrine treatment for breast cancer, which does not 
show an improved outcome when hormonal agents are administered 
concomitantly152 but may be superior when agents are administered 
in sequence153. We should increasingly be able to predict adap-
tive responses and genetic resistance mechanisms from preclinical  
models, thereby informing clinical drug combinations.

Traditionally, the clinical development of new drugs has been pur-
sued by evaluating one agent at a time—even for drugs that will almost 
inevitably end up in combinations—with the new drug often tested in 
large randomized phase 3 studies in combination with the standard of 
care as compared with the standard of care (usually cytotoxic agents) 
alone154. It has become clear that traditional approaches to phase 2  
and 3 studies may no longer be appropriate in many situations. 
Moreover, such large inflexible clinical trials compete for patients 
and resources with other opportunities. There is increasing use of 
adaptive clinical trial designs, in which learning from initial cohorts 
informs subsequent decision making (Fig. 5). A Baysian perspective 
can be taken that facilitates the building of an efficient and accurate 
trial, as in the I-SPY2 study (NCT01042379), which evaluates drugs 
from several companies in a phase 2 screening process.

Although there is evidence of different companies working 
together on clinical trials of two unapproved drugs, as with the 
AKT and MEK study mentioned earlier66, such cooperation still 
seems to be limited by commercial factors including intellectual 
property claims. One possible solution is to expand precompeti-
tive, open-access drug discovery and clinical development ideas to 
incorporate drug combinations155.

There is now evidence that the regulatory agencies are conscious of 
the current challenges and dilemmas inherent in combination studies 
and are evolving to accommodate the need for greater flexibility while 
at the same time ensuring that medicines are safe and effective156. 
Guidance on the development of novel combination therapies has been 
issued by the FDA156 (http:/www.fda.gov/downloads/Drugs/Guidan
ceComplianceRegulatoryInformation/Guidances/UCM236669.pdf). 
With the trend toward the inclusion of an expansion cohort in phase 1 
studies comprising patients predicted to be sensitive, it can be argued 
that seeing a high response rate could lead directly to a New Drug 
Application or to a randomized phase 3 study23. The idea is to make 
active agents and effective combinations available to patients as early as 
possible in areas of high unmet medical need. Any risks can be managed 
by subsequent pharmacovigilance. Finally the cost of drug combina-
tions must also be considered in health systems that are increasingly 
financially constrained157 (http://asco.org/topfive).

Conclusions
Very recent research predicts a global surge in new cancer cases from 
12.7 million in 2008 to 22.2 million by 2030, indicating a huge increase 
in unmet medical need for which effective drug combinations will be 
essential158. Powered by genomic technologies, astonishing progress 
has been made in our understanding of the genetics and biology of 
human cancers and in the discovery of molecularly targeted therapies 
for personalized medicine. This means that clinical trials can and 
should be underpinned by sound biological hypotheses. At the same 
time, the major challenges of extensive tumor heterogeneity, clonal 
selection and adaptive feedback loops have now been recognized, 
providing a new genetic and biochemical explanation for the enduring 
and shape-shifting nature of drug resistance. It seems that some things 
never change. To the pessimistic, the personalized cancer medicine 
glass suddenly looks emptier than it did with imatinib in chronic 
myeloid leukemia. A more optimistic view is that the glass is half 
full, but that we need to redouble our efforts to be more sophisticated 
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in our use of the powerful technologies at our disposal, including 
smart drugs, validated biomarkers and next-generation sequencing, 
other omics technologies and molecular imaging, to overcome the 
redoubtable foe that is cancer. It is clear that drug combinations cur-
rently provide a route, and possibly the only route to overcome the 
complexity of human cancers. The drug combinations field has moved 
on considerably from the previous dominance of empirical clinical 
studies that were based on ad hoc preclinical investigations seeking to 
identify synergistic or additive interactions with existing agents, or on 
pragmatically combining clinically active drugs with nonoverlapping 
toxicity, to the use of rational approaches driven by biological hypoth-
eses based on preventing or overcoming known polygenic-resistance 
mechanisms and feedback loops. Clinical trials featuring adap-
tive designs and the Pharmacologic Audit Trail with predictive and 
molecular response biomarkers will increasingly be underpinned by 
computational and experimental network biology science. Combining 
drugs based on increasingly well-understood molecular interactions 
and attacking complementary cancer hallmarks or distinct cell popu-
lations in heterogeneous tumors is now imperative. Emphasis over 
the last few years has been on combining addiction-blocking drugs 
with each other, or combining these molecularly targeted agents 
with cytotoxic chemotherapy, in patient subgroups that are increas-
ingly defined by predictive biomarkers. We now need to understand  
better how to include drugs targeting synthetic lethal mechanisms 
(and other nononcogene addiction drugs) within drug combinations, 
and to determine the extent to which they can be combined success-
fully with chemotherapy drugs, other targeted agents and immuno-
therapy without increasing toxicity. There is no question that success 
in defeating cancer depends on sophisticated weaponry that includes 
a battery of rationally designed drug combinations, constructed and 
administered according to the molecular pathology and network bio-
logy of the particular tumor, in the individual patient, at the particular 
time in question (Fig. 5). In this way we can achieve truly person-
alized, precision medicine for individual cancer patients. We face a 
major challenge, but we have powerful tools to tackle it.
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